hiperbola


Hipérbola

Las asíntotas de la hipérbola se muestran como líneas discontinuas azules que se cortan en el centro de la hipérbola (curvas rojas), C. Los dos puntos focales se denominan F1 y F2, la línea negra que los une es el eje transversal. La delgada línea perpendicular en negro que pasa por el centro es el eje conjugado. Las dos líneas gruesas en negro paralelas al eje conjugado (por lo tanto, perpendicular al eje transversal) son las dos directrices, D1 y D2. La excentricidad e (e>1), es igual al cociente entre las distancias (en verde) desde un puntoP de la hipérbola a uno de los focos y su correspondiente directriz. Los dos vértices se encuentran en el eje transversal a una distancia ±a con respecto al centro.
Una hipérbola (del griego ὑπερβολή) es una sección cónica, una curva abierta de dos ramas obtenida al cortar un cono recto por un plano oblicuo al eje de simetría con ángulo menor que el de la generatrizrespecto del eje de revolución.1

Unahipérbolaes el lugar geométrico de los puntos de un plano tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos, llamadosfocos, es igual a la distancia entre los vértices, la cual es una constante positiva.


[editar]
Etimología. Hipérbole e hipérbola

Secciones cónicas.
Hipérbola deriva de la palabra griega ὑπερβολή (exceso), y es cognado de hipérbole (la figura literaria que equivale a exageración).
Véase también: hipérbole

[editar]Historia

Debido a la inclinación del corte, el plano de la hipérbola interseca ambas ramas del cono.
Según la tradición, las secciones cónicas fueron descubiertas por Menecmo, en su estudio del problema de la duplicación del cubo,2 donde demuestra la existencia de una solución mediante el corte de una parábola con una hipérbola, lo cual es confirmado posteriormente por Proclo y Eratóstenes.3
Sin embargo, el primero en usar el término hipérbolafue Apolonio de Perge en su tratado Cónicas,4considerada obra cumbre sobre el tema de las matemáticas griegas, y donde se desarrolla el estudio de las tangentes a secciones cónicas.

[editar]Ecuaciones de la hipérbola

Ecuaciones en coordenadas cartesianas: Ecuación de una hipérbola con centro en el origen de coordenadas (0, 0) \, y ecuación de la hipérbola en su forma compleja.
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
Ecuación de una hipérbola con centro en el punto (h, k) \,
\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1
Ejemplos:
a)
\frac{(x)^2}{25} - \frac{(y)^2}{9} = 1
b)
\frac{(x)^2}{9} - \frac{(y)^2}{25} = 1

Ecuación de la hipérbola en su forma compleja
Una hipérbola en el plano complejo es el lugar geométrico formado por un conjunto de puntos z\,, en el plano Re Im\,; tales que, cualesquiera de ellos satisface la condición geométrica de que el valor absoluto de la diferencia de sus distacias |z-w_1|-|z-w_2|\,, a dos puntos fijos llamados focosw_1\, y w_2\,, es una costante positiva igual al doble de la distancia (osea 2l\, ) que existe entre su centro y cualesquiera de sus vértices del eje focal.
La ecuacion queda: |z-w_1|-|z-w_2|=2l\,
Evidentemente esta operación se lleva a cabo en el conjunto de los números complejos.

[editar]Ecuaciones en coordenadas polares

Dos hipérbolas y sus asíntotas.
Hipérbola abierta de derecha a izquierda: Hyperbola2.png
r^2 =a\sec 2\theta \,

Hipérbola abierta de arriba a abajo:
r^2 =-a\sec 2\theta \,
Hipérbola abierta de noreste a suroeste: Giperbola-ravnoboch.png
r^2 =a\csc 2\theta \,
Hipérbola abierta de noroeste a sureste:
r^2 =-a\csc 2\theta \,

[editar]Ecuaciones paramétricas

Imagen de sección cónica.
Hipérbola abierta de derecha a izquierda:
\begin{matrix}
 x = a\cosh t + h \\
 y = b\sinh t + k \\
\end{matrix}
\qquad \mathrm{o} \qquad\begin{matrix}
 x = \pm a\csc t + h \\
 y = b\ \operatorname {tan}\ t + k \\
\end{matrix}
Hipérbola abierta de arriba a abajo:
\begin{matrix}
 x = a\cosh t + h \\
 y = b\sinh t + k \\
\end{matrix}
\qquad \mathrm{o} \qquad\begin{matrix}
 x = a\ \operatorname {sen}\ t + h \\
 y = \pm b\tan-1 t + k \\
\end{matrix}